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Abstract We study the asymptotic properties of the number of open paths of length n in

an oriented ρ-percolation model. We show that this number is enα(ρ)(1+o(1)) as n → ∞.

The exponent α is deterministic, it can be expressed in terms of the free energy of a poly-

mer model, and it can be explicitly computed in some range of the parameters. Moreover,

in a restricted range of the parameters, we even show that the number of such paths is

n−1/2Wenα(ρ)(1 + o(1)) for some nondegenerate random variable W . We build on connec-

tions with the model of directed polymers in random environment, and we use techniques

and results developed in this context.
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1 Introduction and Results

1.1 Introduction

In this paper we study the number of open paths in an oriented ρ-percolation model in di-
mension 1+d , or, equivalently, the number of ρ-open path in an oriented percolation model.
Consider the graph Z+ × Z

d , with Z+ = {0,1,2,3, . . .}, and fix some parameter p ∈ (0,1).
To each site of this graph except the origin, assign a variable taking value 1 with probabil-
ity p and 0 with probability 1 −p, independently of the other sites. An oriented (sometimes
also called semi-oriented) path of length n is a sequence (0, x0), (1, x1), (2, x2), . . . , (n, xn),
where x0 = 0 and xi, xi+1 are neighbors in Z

d , i = 0, . . . , n − 1: viewing the first coordinate
as time, one can think of such path as a path of the d-dimensional simple random walk. Fix
another parameter ρ ∈ [0,1]; the concept of ρ-percolation was introduced by Menshikov
and Zuev in [20], as the occurrence of an infinite length path with asymptotic density of 1s
larger or equal to ρ. As in classical percolation, the probability of this event is subject to
a dichotomy [20] according to p larger or smaller than some critical threshold, which was
later studied by Kesten and Su [16] in the asymptotics of large dimension.

In the present paper, we discuss paths of finite length n, in the limit n → ∞. An oriented
path of length n is called ρ-open, if the proportion of 1s in it is at least ρ. From standard
percolation theory it is known that for large p there are 1-open oriented paths with nonva-
nishing probability, and from [20] that for any p one can find ρ larger than p such that,
almost surely, there are ρ-open oriented paths for large n. However, the question of how
many such paths of length n can be found in a typical situation, was still unaddressed in the
literature. When finishing this manuscript, we have learned of the related work [17].

In this paper, we prove that the number of different ρ-open paths of length n behaves like
enα(ρ)(1+o(1)), where the exponent α(ρ) is deterministic and, of course, also depends on p

and d . We prove that the function α(·) is the negative convex conjugate of the free energy
of directed polymers in random environment. This model has attracted a lot of interest in
recent years, leading to a better—although very incomplete—understanding. We will exten-
sively use the current knowledge of thermodynamics of the polymer model, and the reader
is referred to [6] for a recent survey. This will allow us to obtain, when d ≥ 3, the explicit
expression for α(ρ) in a certain range of values for ρ depending on the parameters p and d .
The reason for this remarkable fact is the existence of the so-called “weak-disorder region”
in the polymer model, discovered in [14] and [3]: this reflects here into a parameter region
where the number of paths is of the same order as its expected value.

At this point the reader may be tempted to use first and second moment methods to
estimate the number of paths. The first moment is easily computed, and serves as an upper
bound in complete generality. The second moment is more difficult to analyse. However,
it can be checked that in large dimension and for density close to the parameter p of the
Bernoulli, the ratio second-to-first-squared remains bounded in the limit of an infinitely
long path. This means that, under these circumstances, the upper bound gives the right order
of magnitude with a positive probability. However, (i) this method does not tell us anything
on α for general parameters, (ii) it fails to keep track of the correlation between counts for
different values of the density.

Our strategy will be quite different. We will study the moment generating function of
the number of paths, which is not surprising in such a combinatorial problem. The point is
that the moment generating function is simply the partition function of the directed polymer
in random environment. This is a well-known object in statistical physics, its logarithmic
asymptotics is well studied, and is given by the free energy. From the existence and known
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properties of the free energy, we will derive the existence of α and its expression in thermo-
dynamics terms. In the course of our analysis we will prove that the free energy, a convex
function of the inverse temperature, is in fact strictly convex. This property is new and in-
teresting for the polymer model.

Moreover, in a more restricted range of values for ρ, we even obtain an equivalent for
the number of paths which achieves exactly a given density of 1s. This is clearly a very
sharp estimate, that we obtain by using the power of complex analysis, and convergence of
the renormalized moment generating function in the sense of analytic functions. Certainly a
naive moments method cannot lead to such an equivalent.

1.2 Notations and Results

Now, let us define the model formally. Let η(t, x), t = 1,2, . . ., x ∈ Z
d be a sequence of

independent identically distributed Bernoulli random variables, with common parameter p ∈
(0,1), P(η(t, x) = 1) = p = 1 − P(η(t, x) = 0). We denote by (�,A,P) the probability
space where this sequence is defined. The vertex (t, x) is open if η(t, x) = 1 and closed in
the opposite case. A nearest neighbor path S in Z

d of length n (1 ≤ n ≤ ∞) is a sequence
S = (St ; t = 0, . . . , n), St ∈ Z

d , S0 = 0,‖St − St−1‖1 = 1 for t = 1, . . . , n. We denote by Pn

the set of such paths S, and by P∞ the set of infinite length nearest neighbor paths. For
S ∈ Pn, let

Hn(S) =
n∑

t=1

η(t, St ) (1)

be the number of open vertices along the path S.
In oriented percolation, one is concerned with the event that there exists an infinite open

path S, i.e.

Perc= {there exists S ∈ P∞ : η(t, St ) = 1 for all t ≥ 1}.
It is well known [12, 13] that there exists �pc(d) ∈ (0,1), called the critical percolation
threshold, such that

P(Perc)

{
> 0 if p > �pc(d),

= 0 if p < �pc(d).
(2)

For ρ ∈ (p,1], Menshikov and Zuev [20] introduced ρ-percolation as the event that there
exists an infinite path S with asymptotic proportion at least ρ of open sites,

ρ-Perc=
{

there exists S ∈ P∞ : lim inf
n→∞ Hn(S)/n ≥ ρ

}
.

They showed that there also exists a threshold �pc(ρ, d) such that (2) holds with ρ-Perc
instead of Perc (with the probability of ρ-Perc being equal to 1 when p > �pc(ρ, d)).
Very little has been proved for ρ-percolation. The asymptotics of �pc(ρ, d) for large d are
obtained in [16] at first order, showing that d1/ρ �pc(ρ, d) has a limit as d → ∞, and that the
limit is different from the analogous quantity for d-ary trees. As mentioned in this reference,
the equality �pc(1, d) = �pc(d) follows from Theorem 5 of [19].

In this paper we are interested in the number of oriented paths of length n which have
exactly k open vertices (k ∈ {0, . . . , n}),

Qn(k) = Card{S ∈ Pn : Hn(S) = k}
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(CardA denotes the cardinality of A) and the related quantity given, for ρ ∈ [0,1], by

Rn(ρ) =
{

Card{S ∈ Pn : Hn(S) ≥ nρ}, ρ ≥ p,

Card{S ∈ Pn : Hn(S) ≤ nρ}, ρ < p.

Note that Qn(k),Rn(ρ) are random variables, that Rn(ρ) = ∑
k≥nρ Qn(k) when ρ ≥ p, and

that Perc= ⋂
n{Qn(n) ≥ 1} = ⋂

n{Rn(1) ≥ 1}.
In this paper we relate these quantities to the model of directed polymers in random

environment. Central in this model is the (unnormalized) partition function Zn = Zn(β,η)

at inverse temperature β ∈ R in the environment η given by

Zn =
∑

S∈Pn

exp{βHn(S)}.

By subadditive arguments one can prove that

ϕ(β) = lim
n→∞

1

n
E lnZn (3)

exists in R (E is the expectation under P), and by concentration arguments, that the event
�0(β) defined by

�0(β) =
{

lim
n→∞

1

n
lnZn = ϕ(β)

}
(4)

has full measure, P(�0(β)) = 1, see e.g. [5]. The function ϕ is called the free energy, it is a
non-decreasing and convex function of β . Its Legendre conjugate

ϕ∗(ρ) = sup{βρ − ϕ(β);β ∈ R}, (5)

is a convex, lower semi-continuous function from [0,1] to R ∪ {+∞}, such that ϕ∗(ρ) ≥
ϕ∗(p) = − ln(2d) (indeed, ϕ′(0) = p, as it will be shown later). Legendre convex duality
is better understood by taking a glance at the graphical construction, e.g. figures 2.2.1 and
2.2.2 in [9]; here, on Fig. 1 we illustrate how the functions ϕ and ϕ∗ typically look in our
situation. The existence of the so-called time constants,

ρ+ = lim
n→∞ max

S∈Pn

Hn(S)

n
, ρ− = lim

n→∞ min
S∈Pn

Hn(S)

n
, P-a.s.

can be obtained by specifying a direction for the ending point Sn, which allows using
subadditive arguments [15], and then summing over the possible directions. However we
give here a short proof in the spirit of this work. Since exp{β maxS∈Pn Hn(S)} ≤ Zn ≤
(2d)n exp{β maxS∈Pn Hn(S)}, we have

1

nβ
lnZn − 1

β
ln(2d) ≤ max

S∈Pn

Hn(S)

n
≤ 1

nβ
lnZn.

Taking the limits n → ∞ and then β → +∞, we see that ρ+ is well-defined, and is in fact
equal to the slope limβ→+∞ ϕ(β)/β of the asymptotic direction of ϕ at +∞. From standard
properties of convex duality, the range of the derivative (d/dβ)(1/n) lnZn(β) a.s. converges
to [ρ−, ρ+] in Hausdorff distance, and ϕ∗(ρ) < +∞ if and only if ρ ∈ [ρ−, ρ+]. For such ρ,
we have ϕ∗(ρ) ≤ 0.



The Number of Open Paths in an Oriented ρ-Percolation Model 361

Fig. 1 The function ϕ and its Legendre transform ϕ∗

Theorem 1.1 For all ρ ∈ [0,1] with ρ �= ρ+, ρ−, the following limit

α(ρ) = lim
n→∞

1

n
lnRn(ρ) (6)

exists P-a.s. (possibly assuming the value −∞), and is given by

α(ρ) = −ϕ∗(ρ).
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Fig. 2 Typical behaviour of the
function α when d ≥ 3

Clearly, α is concave, with values in [0, ln(2d)] ∪ {−∞} and α(p) = ln(2d). Note that,
for all ρ ∈ (ρ−, ρ+) and almost every η,

Rn(ρ) = expn[α(ρ) + o(1)], as n → ∞.

Remark 1.2 By convexity the function α is continuous on (ρ−, ρ+). For now, it is not clear
to us whether the limit α(ρ+−) should be equal to 0 in the case p ≤ �pc(d). In the case p >

�pc(d), it is possible to show by subadditive arguments that, conditionally on percolation, the
limit α(1) in (6) exists and is positive, but it is not clear to us whether α is continuous at 1.

Let

λ(β) = ln Eeβη(t,x) = ln[1 + p(eβ − 1)], λ̂(β) = λ(β) + ln(2d),

then EZn = exp{nλ̂(β)}. A direct computation shows that the Legendre conjugate λ̂∗(ρ) =
sup{βρ − λ̂(β);β ∈ R} of λ̂ is equal to

λ̂∗(ρ) = − ln(2d) + ρ ln
ρ

p
+ (1 − ρ) ln

1 − ρ

1 − p

= ρ ln
ρ

2dp
+ (1 − ρ) ln

1 − ρ

2d(1 − p)
. (7)

The function (−λ̂∗) is important for understanding the rate α. (We recall that both functions
depend on p, but we do not write explicitly the dependence.) Note that these two functions
coincide at ρ = p and take the value ln(2d).

Theorem 1.3 Let p ∈ (0,1).

1. We have the annealed bound: For all ρ,

α(ρ) ≤ −λ̂∗(ρ). (8)
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2. The function α(ρ) + λ̂∗(ρ) is nonincreasing for ρ ∈ [p,ρ+) and is nondecreasing for
ρ ∈ (ρ−,p].

3. The set

V(p) = {ρ ∈ (0,1) : α(ρ) = −λ̂∗(ρ)} (9)

is an interval containing p (here, “interval” is understood in broad sense, i.e., it can
reduce to the single point {p}).

4. In dimension d = 1, V(p) = {p}, i.e. the inequality in (8) is strict for all ρ �= p.
5. In dimension d ≥ 3, V(p) contains a neighborhood of p.
6. Let d ≥ 3, and πd be the probability for the d-dimensional simple random walk to ever

return to the starting point. When p > πd , then [p,1) ⊂ V(p), so that the equality holds
in (8) for all ρ ∈ [p,1). Similarly, when p < 1 − πd , then (0,p] ⊂ V(p), so that the
equality holds for all ρ ∈ (0,p].

7. In dimension d ≥ 2, if p < (1/2d), then supV(p) < 1. Similarly, if p > 1 − (1/2d), we
have infV(p) > 0.

See Fig. 2 for the typical shape of the function α.

Remark 1.4

(i) The annealed bound comes from the first-moment method, and most of the results
stating that the equality α(ρ) = −λ̂∗(ρ) holds, are derived from the second-moment
method.

(ii) By transience of the random walk in dimension d ≥ 3, we have πd < 1. In fact, π3 =
0.3404 . . . > π4 > π5 . . . [24, page 103]. In particular, for p ∈ (πd,1 − πd), we have
α(ρ) = −λ̂∗(ρ) for all ρ ∈ (0,1).

The following property of the free energy ϕ of the directed polymer is interesting and
seems to be new.

Theorem 1.5 The function ϕ is strictly convex on R, and the functions ϕ∗ and α are differ-
entiable in the interior of their domains.

We will obtain much sharper results for large dimension and ρ’s not too far from p. The
reason is that the partition function Zn behaves smoothly as n ↗ ∞. The almost-sure limit

W∞(β) = lim
n→∞Zn(β)e−nλ̂(β)

exists for all β , since the sequence is a positive (Gn)n-martingale, where Gn = σ {η(t, x); t ≤
n,x ∈ Z

d}. So, let us now concentrate on the case of large dimension, d ≥ 3. When β

belongs to some neighborhood of the origin (known as the weak disorder region), the limit
W∞ is strictly positive a.s. In a smaller neighborhood of the origin, the limit can be expressed
as a (random) perturbation series in L2 [23]. Moreover, the convergence holds in much
stronger sense, namely, in the sense of analytic functions [8]. We will use strong tools from
complex analysis, as it is classically done to obtain limit theorems for sums of random
variables [21].

Theorem 1.6 Assume d ≥ 3. There exist a neighborhood U3 of p in R and an event �2 with
full probability such that for every sequence kn with kn/n → ρ ∈ U3 and all η ∈ �2,

Qn(kn) =
√−α′′(ρ)

2πn
W∞(β(ρ)) exp

{
nα

(
kn

n

)}
(1 + o(1))
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where o(1) tends to 0 as n → ∞, and β(ρ) = ln (1−p)ρ

p(1−ρ)
. The neighborhood U3 is contained

in V(p), hence we have α = −λ̂∗ with λ̂∗ given by (7).

We note that the leading order is deterministic, but the prefactor is random (as W∞), de-
pending on the particular realization of the Bernoulli field. This theorem is a corollary of a
more refined result (Theorem 3.2), which can be found in Sect. 3. This will be proved by
complex analysis arguments, considering the Fourier transform of Hn under some (polymer)
measure. Fourier methods are quite strong, they are used in a different spirit in [2] to obtain
sharp results on the polymer path itself for small β . Uniform convergence of analytic mar-
tingales have been already proved in the (related) model of supercritical branching random
walks [1], leading to sharp controls of the local growth of the population. The disadvantage
is that we have to restrict the parameter domain. It would be tempting to use only real vari-
able techniques as in the Ornstein-Zernike theory for the Bernoulli bond percolation [4], but
we take another, shorter route.

Remark 1.7 The model is also interesting with real-valued η(t, x) with general distribution.
This is motivated by first-passage time percolation. Our results at the exponential order
remain valid for variables with exponential moments. For the case of the Gaussian law, we
mention the recent work [18] on the so-called REM conjecture: it is proved that the local
statistics of (Hn(S);S ∈ Pn) approach that of a Poisson point process, provided that one
focuses on values distant from the mean EHn by at most o(n1−ε).

We can interpret our last result in this spirit. In our case, (Hn(S);S ∈ Pn) spreads on the
lattice, and natural local statistics of the energy levels are the ratios Qn(kn)/EQn(kn). For
d ≥ 3 and kn ∼ nρ ∈ U3,

Qn(kn)/EQn(kn) � W∞(β(ρ))

since EW∞(β) = 1. We emphasize that here the energy level kn is of order n (far from
the bulk), and that the limit is not universal but depends on the lattice and the law of the
environment η.

2 Logarithmic Asymptotics

2.1 Proof of Theorem 1.1

We start by introducing some probability measures.
Let P be the law of the simple random walk on Z

d starting from 0, i.e. the probability
measure on the space P∞ of infinite paths making the increments St −St−1 independent and
uniformly distributed on the set of 2d neighbors of 0 ∈ Z

d . Observe that the restriction of P

to paths of length n is the normalized counting measure on Pn, and so the partition function
takes now the familiar form (EP is the expectation with respect to P )

Zn = (2d)nEP [exp{βHn(S)}]. (10)

The law νn = νη
n of (1/n)Hn under P , given by νn({ρ}) := P (Hn(S) = nρ), is such that

νn({ρ}) = Qn(nρ)

(2d)n
if nρ ∈ {0,1, . . . , n}. (11)
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We extend νn to a probability measure on R that we still denote by νn, νn(A) =∑
ρ∈A,nρ∈{0,1,...,n} νn({ρ}),A ⊂ R.
All what we need to obtain the proof of Theorem 1.1, is to prove that νn obeys an al-

most sure large deviation principle, see Proposition 2.1 below. Recall first the event �0(β)

from (4), and define the event �0 = ⋂
β∈Q �0(β). Then, we have P(�0) = 1, and on this

event the convergence (4) holds for any real number β by convexity and monotonicity.

Proposition 2.1 The function

I (ρ) = ln(2d) + ϕ∗(ρ) ∈ [0, ln(2d)] ∪ {+∞}
is lower semi-continuous and convex on [0,1]. Moreover, for all η ∈ �0 the sequence
(νn, n ≥ 1) obeys a large deviation principle with rate function I . That is,

(i) for any closed F ⊂ [0,1], we have

lim sup
n→∞

n−1 lnνn(F ) ≤ − inf
ρ∈F

I (ρ),

(ii) for any open (in the induced topology on [0,1]) G ⊂ [0,1], we have

lim inf
n→∞ n−1 lnνn(G) ≥ − inf

ρ∈G
I (ρ).

Now, we first finish the proof of Theorem 1.1, and then prove the above proposition.

Proof of Theorem 1.1 Assume that ρ ∈ [p,ρ+) and η ∈ �0. Applying (i) of Proposition 2.1
with F = [ρ,1] and using (11) together with the fact that ρ ≥ p, we see that the limit in (6)
is not larger than ln(2d)−I (ρ) = α(ρ). Applying (ii) of Proposition 2.1 with G = (ρ +ε,1]
(ε > 0) and using the fact that ρ ≥ p, we see that the limit is at least α(ρ +ε). Since ρ < ρ+,
this quantity tends to α(ρ) as ε ↘ 0. This proves (6) for ρ ∈ [p,ρ+). The case ρ ∈ (ρ−,p)

is completely similar. Finally, when ρ > ρ+ (the case ρ < ρ− is similar) we have I (ρ) = ∞
and then Rn(ρ) = 0 for large n, proving (6) in this case. �

Proof of Proposition 2.1 The properties of I are clear from the definition.
Fix η ∈ �0. In view of (4) and (10), the Laplace transforms of νn(·) = P ((1/n)Hn = ·)

have logarithmic asymptotics:

lim
n→∞

1

n
lnEP (exp{βHn(S)}) = ϕ(β) − ln(2d)

for all real β . From the Gärtner-Ellis theorem (Theorem 2.3.6 in [9]), the full statement (i)
in Proposition 2.1 follows, and we obtain for open G ⊂ [0,1] that

lim inf
n→∞

1

n
lnνn(G) ≥ − inf{I (ρ);ρ ∈ G ∩ E}, (12)

where

E = {
ρ ∈ [0,1] : ∃β ∀r �= ρ,βρ − ϕ∗(ρ) > βr − ϕ∗(r)

}

is the set of exposed points of ϕ∗ from (5). Its complement is the set of all points ρ such
that ϕ∗ is linear in a non-trivial interval containing ρ. We will improve (12) into (ii) of
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Proposition 2.1 with a subadditivity argument. We start by showing that ϕ is differentiable
at 0 with that ϕ′(0) = p. Indeed, using Jensen inequality twice, we have

1

n
lnEP [eEβ(Hn−np)] ≤ E

1

n
lnEP [eβ(Hn−np)] ≤ 1

n
ln EEP [eβ(Hn−np)].

Computing the extreme terms and taking the limit n → ∞ for the middle one, we get

0 ≤ ϕ(β) − βp ≤ λ(β) − βp,

which shows that ϕ′(0) = p since λ′(0) = p. This implies that p ∈ E and that E is a neigh-
borhood of p. Let ρ ∈ (ρ−, ρ+) ∩ G be a non-exposed point of ϕ∗. For definiteness, we
assume ρ > p. Let

ρ1 = sup{ρ ′ ∈ E;ρ ′ < ρ}, ρ2 = inf{ρ ′ ∈ E;ρ ′ > ρ}.
Recall that ϕ is strictly convex by Theorem 1.5—that we will prove below independently.
This implies that the function ϕ∗ cannot have a linear piece that goes up to ρ+, cf. Fig. 1.
Then, p < ρ1 < ρ < ρ2 < ρ+, and ρ1, ρ2 ∈ E . Let γ ∈ (0,1) such that ρ = γρ1 + (1 − γ )ρ2.
Since the interval (ρ1, ρ2) consists of non-exposed points, we have I (ρ) = γ I (ρ1) + (1 −
γ )I (ρ2). Since G is open and contains ρ, we can find ε > 0 and k, � ∈ N

∗ such that

|u − ρ1| < ε, |v − ρ2| < ε �⇒ ku + �v

k + �
∈ Gε

with Gε the set of r ∈ G at distance at least ε from the outside of G. The key fact is

Card

{
S ∈ Pn(k+�) : Hn(k+�)(S)

n(k + �)
∈ Gε

}

≥
∑

x∈Zd

Card

{
S ∈ Pn(k+�) : Hnk(S)

nk
∈ (ρ1 − ε,ρ1 + ε), Snk = x

}

× Card

{
S ∈ Pn(k+�) : Snk = x,

Hn(k+�)(S) − Hnk(S)

n�
∈ (ρ2 − ε,ρ2 + ε)

}

≥ Card

{
S ∈ Pn(k+�) : Hnk(S)

nk
∈ (ρ1 − ε,ρ1 + ε)

}

× min
‖x‖1≤nk

Card

{
S ∈ Pn(k+�) : Snk = x,

Hn(k+�)(S) − Hnk(S)

n�
∈ (ρ2 − ε,ρ2 + ε)

}

= Card

{
S ∈ Pnk : Hnk(S)

nk
∈ (ρ1 − ε,ρ1 + ε)

}

× min
‖x‖1≤nk

Card

{
S ∈ Pn� : H

(nk,x)
n� (S)

n�
∈ (ρ2 − ε,ρ2 + ε)

}

with H
(nk,x)
n� (S) = ∑n

t=1 η(t + nk,St + x) the Hamiltonian in the time-space shifted envi-
ronment. Similarly, we denote by ν

(nk,x)
n� the measure ν

(nk,x)
n� (·) = P (H

(nk,x)
n� ∈ ·). The above
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display implies that

lim inf
n→∞

1

n(k + �)
lnνn(k+�)(G

ε)

≥ k

k + �
lim inf
n→∞

1

nk
lnνnk((ρ1 − ε,ρ1 + ε))

+ �

k + �
lim inf
n→∞

1

n�
min

‖x‖1≤nk
lnν

(nk,x)
n� ((ρ2 − ε,ρ2 + ε)).

It is straightforward to check that

lim inf
n→∞

1

n(k + �)
lnνn(k+�)(G

ε) ≤ lim inf
n→∞

1

n
lnνn(G),

and it is not difficult to see that

lim inf
n→∞

1

n�
min

‖x‖1≤nk
lnν

(nk,x)
n� ((ρ2 − ε,ρ2 + ε)) ≥ −I (ρ2), P-a.s. (13)

We postpone the proof of (13) for the moment. Hence, the key inequality implies

lim inf
n→∞

1

n
lnνn(G) ≥ − k

k + �
I (ρ1 + ε) − �

k + �
I (ρ2 + ε),

lim inf
n→∞

1

n
lnνn(G) ≥ −[γ I (ρ1) + (1 − γ )I (ρ2)] = −I (ρ),

letting ε ↘ 0 and k/(k + �) → γ . This yields statement (ii) in Proposition 2.1.
Now, let us prove (13). By a standard concentration inequality (e.g., Theorem 4.2 in [7]),

we have

P(| lnZn − E lnZn| ≥ u) ≤ 2 exp

{
− u2

4β2n

}
.

Therefore we have, P-a.s. as n → ∞,

max
‖x‖1≤m≤n

∣∣∣∣
1

n
lnZ(m,x)

n (β) − ϕ(β)

∣∣∣∣ → 0, β ∈ R,

with Z(m,x)
n the partition function associated to H(m,x)

n . Since ρ2 is an exposed point for ϕ∗,
(13) follows from the Gärtner-Ellis theorem. �

Let us comment on the above proof. We could improve (12) into the full lower bound (ii)
in Proposition 2.1 with a subadditivity argument, implying convexity of the rate function.
If we knew that (ρ−, ρ+) ⊂ E—or, equivalently, that ϕ is differentiable,—we could directly
conclude without this extra argument. We tried to prove it, but we could not. We state it as a
conjecture:

Conjecture 2.2 The function ϕ is everywhere differentiable.
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2.2 Proof of Theorem 1.3

1. By Jensen inequality,

E lnZn ≤ nλ̂(β).

Then, ϕ(β) ≤ λ̂(β), which implies ϕ∗(ρ) ≥ λ̂∗(ρ) from the definition of Legendre trans-
form. The inequality now follows from α ≤ −ϕ∗.

2. Set ϕn(β) = n−1
E lnZn(β). From Theorem 1.1 in [8] we have

λ̂′(β) ≥ ϕ′
n(β)

for all β ≥ 0. Hence, for ρ ≥ p, the reciprocal functions are such that

(λ̂′)−1(ρ) ≤ (ϕ′
n)

−1(ρ).

Since (λ̂′)−1 = (λ̂∗)′ and (ϕ′
n)

−1 = (ϕ∗
n)

′, we have

(λ̂∗)′(ρ) ≤ (ϕ∗)′(ρ)

for all ρ ≥ p where ϕ∗ is differentiable. Since α = −ϕ∗ for ρ �= ρ+, this proves the first
half of the desired statement. The other half is similar.

3. From Theorem 1.1 in [8] it is known that the set

W(p) = {β ∈ R : ϕ(β) = λ̂(β)}
is an interval containing 0. Let β ∈ W(p), and ρ = λ′(β) = λ̂′(β). From Theorem 2.3 (a)
in [5] it is known that β ∈ W(p) implies ϕ∗(ρ) ≤ 0. Then, the supremum defining λ̂∗(ρ)

is achieved at β , which implies the first equality in

−λ̂∗(ρ) = −[βρ − λ̂(β)] = −[βρ − ϕ(β)] = −ϕ∗(ρ) = α(ρ),

where the second equality holds for β ∈ W(p), the third one because of ϕ′(β) = λ̂′(β) =
ρ, and the last one because ϕ∗(ρ) ≤ 0.

Let now β /∈ W(p), and ρ = λ′(β). Then,

−λ̂∗(ρ) = −[βρ − λ̂(β)] > −[βρ − ϕ(β)] ≥ −ϕ∗(ρ) ≥ α(ρ).

Observe that λ′ is a diffeomorphism from R to (0,1). From this we can identify the set
V(p) defined by (9),

V(p) = {λ′(β);β ∈ W(p)}, (14)

which is an interval containing p.
4. When d = 1, it is known that W(p) = {0}, see Theorem 1.1 in [8]. Hence, V(p) reduces

to {p}.
5. When d ≥ 3, from celebrated results of Imbrie and Spencer [14], Bolthausen [3], it is

known that W(p) contains a neighborhood of 0. In view of (14), V(p) is in its turn a
neighborhood of p.

6. This is a consequence of [6, example 2.1.1], which shows for instance that, if p > πd ,
then W(p) ⊃ R

+. Indeed, in view of (14), this implies that V(p) contains [p,1), and α

is still equal to −λ̂∗ at ρ = 1 by upper semi-continuity of both functions. The case of
p < 1 − πd is similar.

7. This is a consequence of [6, example 2.2.1], which shows for instance that, if p < (1/2d),
then W(p) is bounded from above. The other case is similar.
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2.3 Strict Convexity of the Free Energy

The aim of this section is to prove Theorem 1.5. We start with a variance estimate analogous
to that for Gibbs field in [10].

Lemma 2.3 For any compact set K ⊂ R, there exists a positive constant C = CK such that

E(lnZn)
′′(β) ≥ Cn, β ∈ K.

Proof The polymer measure at inverse temperature β with environment η is the random
probability measure μn = μβ

n on the path space defined by

μn({S}) = Z−1
n exp{βHn(S)}, S = (S1, . . . , Sn) ∈ Pn. (15)

For simplicity we write μn(S1, . . . , Sn) for μn({(S1, . . . , Sn)}). The polymer measure is
Markovian (but time-inhomogeneous), and

(lnZn)
′′(β) = Varμn(Hn).

Let �t be the t -coordinate mapping on Pn given by �t(S) = St , and regard it as a random
variable.

Define

I(x, y) = {z ∈ Z
d : ‖x − z‖1 = ‖z − y‖1 = 1}, x, y ∈ Z

d (16)

the set of lattice points which are next to both x and y. The set I(x, y) is empty except if y

can be reached in two steps by the simple random walk from x; in this case its cardinality
is equal to 2d,2 or 1 according to y = x,‖y − x‖∞ = 1 or ‖y − x‖∞ = 2. The Markov
property implies that, under μ2n, �1,�3, . . . ,�2n−1 are independent conditionally on �e :=
(�2,�4, . . . ,�2n), and the law of �2t−1 given �e only depends on �2t−2,�2t , and has
support I(�2t−2,�2t ).

From the variance decomposition under conditioning, we have

Varμ2n
(H2n) = Eμ2n

Varμ2n
(H2n | �e) + Varμ2n

(Eμ2n
[H2n | �e])

≥ Eμ2n
Varμ2n

(H2n | �e)

= Eμ2n
Varμ2n

(
n∑

t=1

η(2t − 1,�2t−1) | �e

)

=
n∑

t=1

Eμ2n
Varμ2n

(η(2t − 1,�2t−1) | �e)

where E[ · | �e],Var( · | �e) denote conditional expectation and conditional variance. To
obtain the last equality we used the conditional independence. Define the event

M(η, t, y, z) = {
Card

{
η(t, x);x ∈ I(y, z)

} = 2
}
.

The reason for introducing M(η, t, y, z) is that on this event, a path S conditioned on
St−1 = y, St+1 = z, has the option to pick up a η(t, St ) value that can be either 0 or 1,
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bringing therefore some amount of randomness. This event plays a key role here, as well as
in the proof of Lemma 3.3 below. Note for further purpose that

P
(
M(η, t, y, z)

) = 1 − (
pCardI(y,z) + (1 − p)CardI(y,z)

) =: q(y − z). (17)

The key observation is, for all t ≤ n and β ∈ K ,

Varμ2n
(η(2t − 1,�2t−1) | �e) ≥ C1{M(η,2t − 1,�2t−2,�2t )}, (18)

where the constant C depends only on K and the dimension d . Indeed, on the event
M(η,2t − 1, S2t−2, S2t ), the variable η(2t − 1,�2t−1) brings some fluctuation under the
conditional law: it takes values 0 and 1 with probability uniformly bounded away from 0
provided β remains in the compact set. Hence,

EVarμ2n
(H2n) ≥ CE

n∑

t=1

μ2n[M(η,2t − 1,�2t−2,�2t )]

= CE

n∑

t=1

∑

x,y∈Zd

μ2n(�2t−2 = x,�2t = y)1{M(η,2t − 1, x, y)}.

For 1 ≤ i ≤ n, let μ̃(i)
n be the polymer measure in the environment η̃(t, x) = η(t, x) if t �= i,

η̃(i, x) = 0 for all x. Obviously,

C−μ̃(i)
n (S) ≤ μn(S) ≤ C+μ̃(i)

n (S), S ∈ Pn,

with positive finite C−,C+ not depending on n,η,β ∈ K . Then, with C ′ = CC−,

EVarμ2n
(H2n)

≥ C ′
E

n∑

t=1

∑

x,y∈Zd

μ̃
(2t−1)

2n (�2t−2 = x,�2t = y)1{M(η,2t − 1, x, y)}

= C ′
E

n∑

t=1

∑

x,y∈Zd

μ̃
(2t−1)

2n (�2t−2 = x,�2t = y)P(M(η,2t − 1, x, y))

≥ 2C ′p(1 − p)E

n∑

t=1

∑

x,y∈Zd

μ̃
(2t−1)

2n (�2t−2 = x,�2t = y)1{‖x − y‖∞ ≤ 1}

≥ C ′p(1 − p)E

2n∑

t=2

∑

x,y∈Zd

μ̃
(2t−1)

2n (�t−2 = x,�t = y)1{‖x − y‖∞ ≤ 1},

since we can repeat the same procedure, but conditioning on the path at odd times. Finally,
with �St := St − St−1 and C ′′ = C ′C−p(1 − p), we have for all β ∈ K,ε > 0,

EVarμ2n
(H2n) ≥ C ′′

EEμ2n

2n∑

t=2

1{��t �= ��t−1}

≥ nC ′′ε × Eμ2n(An,ε), (19)
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where

An,ε =
{

S ∈ Pn :
2n∑

t=2

1{�St �= �St−1} ≥ nε

}
.

It is easy to see that the complement

Ac
n,ε =

{
2n∑

t=2

1{�St = �St−1} > n(2 − ε)

}

of this set has cardinality smaller than exp{nδ(ε)}, with δ(ε) ↘ 0 as ε ↘ 0. We bound

P(max{H2n(S);S ∈ Ac
n,ε} ≥ 2nρ) ≤ enδ(ε) × Prob(B(2n,p) ≥ 2nρ),

with B(2n,p) a binomial random variable. It follows that there exists some ρ(ε) with
ρ(ε) ↘ p as ε ↘ 0 such that the left-hand side is less than exp{−nδ(ε)1/2}. For all η such
that max{H2n(S);S ∈ Ac

n,ε} ≤ 2nρ(ε), we have the estimate

μ2n(A
c
n,ε) ≤ exp{2n[βρ(ε) − ϕ(β) + δ(ε) + o(1)]}

≤ exp
{
2n[ϕ∗(ρ(ε)) + δ(ε) + o(1)]}

with o(1) → as n → ∞. But, as ε ↘ 0,

ϕ∗(ρ(ε)) + δ(ε) → ϕ∗(p) = − ln(2d) < 0.

By continuity we can choose ε > 0 such that ϕ∗(ρ(ε)) + δ(ε) ≤ (−1/2) ln(2d), and
Eμ2n(An,ε) → 1 as n → ∞. Finally, from (19) we obtain the desired result for even n.
The same computations apply to μ2n+1, yielding a similar bound. This concludes the proof
of Lemma 2.3. �

Proof of Theorem 1.5 It follows from Lemma 2.3 that, for β,β ′ ∈ K ,

ϕ(β ′) ≥ ϕ(β) + (β ′ − β)ϕ′
r (β) + CK

2
(β ′ − β)2, β ≤ β ′,

with ϕ′
r the right-derivative, and a similar statement for β ′ ≤ β . Indeed, this inequality holds

for (1/n)E lnZn instead of ϕ, and we can pass to the limit n → ∞. This yields the strict
convexity of ϕ. By a classical property of Legendre duality, it implies the differentiability
of ϕ∗. �

3 Sharp Asymptotics

Assume d ≥ 3. Let U0 be the open set in the complex plane given by U0 = {β ∈ C : | Imβ| <
π}. Then, U0 is a neighborhood of the real axis, and λ(β) = log E[exp{βη(t, x)}] is an
analytic function on U0. Define, for n ≥ 0 and β ∈ U0,

Wn(β) = EP

[
exp

(
β

n∑

t=1

η(t, St ) − nλ(β)

)]
. (20)
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Then, for all β ∈ U0, the sequence (Wn(β),n ≥ 0) is a (Gn)n-martingale with complex val-
ues, where Gn = σ {η(t, x); t ≤ n,x ∈ Z

d}. At the same time, for each n and η, Wn(β) is an
analytic function of β ∈ U0.

Define the real subset

U1 = {β ∈ R : λ(2β) − 2λ(β) < − lnπd}, (21)

which is an open interval (β−
1 , β+

1 ) containing 0 (−∞ ≤ β−
1 < 0 < β+

1 ≤ +∞). The follow-
ing is established in [8]:

Proposition 3.1 Define U2 to be the connected component of the set
{
β ∈ U0 : λ(2 Reβ) − 2 Reλ(β) < − lnπd

}

which contains the origin. Then, U2 is a complex neighborhood of U1. Furthermore, there
exists an event �1 with P(�1) = 1 such that,

Wn(β) → W∞(β) as n → ∞, for all η ∈ �1, β ∈ U2,

where the convergence is locally uniform. In particular, the limit W∞(β) is holomorphic in
U2, and all derivatives of Wn converge locally uniformly to the corresponding ones of W∞.
Finally, W∞(β) > 0 for all β ∈ U1, P-a.s.

For the sake of completeness we repeat the proof here.

Proof of Proposition 3.1 Since (ez) = ez and E[f ] = E[f ], we have λ(β) = λ(β), and

E
[|Wn(β)|2] = E

[
EP [exp{βHn(S) − nλ(β)}]EP [exp{βHn(S̃) − nλ(β)}]]

= EP⊗2

[
E

[
exp{βHn(S) + βHn(S̃) − 2nReλ(β)}]]

= EP⊗2

[
exp

{
[λ(2 Reβ) − 2 Reλ(β)]

n∑

t=1

1{St = S̃t }
}]

≤ EP⊗2

[
exp

{
[λ(2 Reβ) − 2 Reλ(β)]

∞∑

t=1

1{St = S̃t }
}]

< ∞ (22)

if β ∈ U2. Indeed, the random variable
∑∞

t=1 1{St = S̃t } (which is the number of meetings
between two independent d-dimensional simple random walks) is geometrically distributed
with parameter πd .

For any real β ∈ U2, the positive martingale Wn(β) is bounded in L2, hence it con-
verges almost surely and in L2-norm to a non-negative limit W∞(β). Moreover, the event
{W∞(β) = 0} is a tail event, so it has probability 0 or 1. Since EW∞(β) = 1, we have nec-
essarily W∞(β) > 0, P-a.s.

We need a stronger convergence result. Fix a point β ∈ U2 and a radius r > 0 such that the
closed disk D(β, r) ⊂ U2. Choosing R > r such that D(β,R) ⊂ U2, we obtain by Cauchy’s
integral formula for all β ′ ∈ D(β, r),

Wn(β
′) = 1

2iπ

∫

∂D(β,R)

Wn(z)

z − β ′ dz =
∫ 1

0

Wn(β + Re2iπu)Re2iπu

(β + Re2iπu) − β ′ du,
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hence

Xn := sup{|Wn(β
′)|;β ′ ∈ D(β, r)} ≤ R

∫ 1

0

|Wn(β + Re2iπu)|
R − r

du.

Letting C = (R/(R − r))2, we obtain by the Schwarz inequality

(E[Xn])2 ≤ CE

[∫ 1

0
|Wn(β + Re2iπu)|2du

]

≤ C sup{E[|Wn(β
′′)|2];n ≥ 1, β ′′ ∈ D(β,R)}

< ∞
in view of (22). Notice now that Xn, a supremum of positive submartingales, is itself a
positive submartingale. Since sup E[Xn] < ∞, Xn converges P-a.s. to a finite limit X∞.
Finally,

sup{|Wn(β
′)|;β ′ ∈ D(β, r), n ≥ 1} < ∞ P-a.s.,

and Wn is uniformly bounded on compact subsets of U2 on a set of environments of full
probability. On this set, (Wn,n ≥ 0) is a normal sequence [22] which has a unique limit on
the real axis: since U2 is connected, the full sequence converges to some limit W∞, which is
holomorphic on U2, and, as mentioned above, positive on the real axis. �

We do not know that W∞(β) �= 0 for general β ∈ U2, only for β ∈ U1. Therefore, for all
η ∈ �1, we fix another complex neighborhood U3 of U1, included in U2 and depending on η,
such that W∞ and Wn (for n large) belongs to C \ R−. Recall that

Zn(β) = Wn(β) exp{nλ̂(β)} (23)

by definition.
It is sometimes convenient to consider, for real β , the β-tilted law

νn,β(k) = Zn(β)−1eβkQn(k), k ∈ {0,1, . . . , n},
which is a probability measure on the integers 0,1, . . . , n. Its mean is equal to (d/dβ)

lnZn(β), and its variance is

Dn,β = d2

dβ2
lnZn(β). (24)

These quantities depend also on η, and Dn,β > 0 as soon as the Bernoulli configuration
(η(t, x), t ≤ n,‖x‖1 ≤ n,‖x‖1 = n mod 2) is not identically 0 or 1 on each “hyperplane”
t = k, k = 1, . . . , n. This happens eventually with probability 1, so we will not worry about
degeneracy of the variance Dn,β . By positivity of the variance, for all u in the range of
(d/dβ) lnZn(·) there exists unique β = βn(u) ∈ R such that

d

dβ
lnZn(βn(u)) = u. (25)

Observe that the function βn is itself random. Define for β ∈ R, k ∈ N,

In(k) = sup{βk − lnZn(β);β ∈ R} − n ln(2d). (26)
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(We will see in the proof of Theorem 1.6 below, that In(k) ∼ nI (k/n) with I as in Proposi-
tion 2.1.) For k in the range of (d/dβ) lnZn(·), we have

In(k) = βn(k)k − lnZn(βn(k)) − n ln(2d). (27)

Recall (β−
1 , β+

1 ) defined in (21).

Theorem 3.2 There exist an event �2 with P(�2) = 1 and a real neighborhood U4 of 0,
U4 ⊂ (β−

1 , β+
1 ), with the following property. Let kn ∈ {0,1, . . . , n} be a sequence such that

βn(kn) remains in a compact subset K of U4, and let D̂n = Dn,βn(kn). Then, for all η ∈ �2,

Qn(kn) = 1√
2πD̂n

exp{−In(kn) + n ln(2d)} × (1 + o(1)),

where o(1) → 0 as n → ∞.

Proof of Theorem 3.2 Suppose that β is a real number. Note that the Fourier transform of
the tilted measure is

n∑

k=0

eikuνn,β(k) = Zn(β + iu)

Zn(β)
.

From the usual inversion formula for Fourier series we have

Qn(kn) = Zn(β)e−βkn × 1

2π

∫ π

−π

Zn(β + iu)

Zn(β)
e−iknu du.

Taking β = βn(kn) and using (27) this becomes

Qn(kn) = e−In(kn)+n ln(2d) × 1

2π

∫ π

−π

Zn(βn(kn) + iu)

Zn(βn(kn))
e−iknu du. (28)

For the moment, K is any compact subset of (β−
1 , β+

1 ). From the Taylor expansion of Zn at
β = βn(kn) and (25), we have

logZn(βn(kn) + iu) = logZn(βn(kn)) + iukn − u2

2
D̂n + Restn,

where the remainder can be estimated by the Cauchy integral formula,

|Restn| ≤ |u|3δ−3
K max{| logZn(β

′)|;β ′ ∈ D(β ′′, δK),β ′′ ∈ K}

for all |u| ≤ δK , with δK > 0 equal to half of the distance from K to the complement of U3.
From Proposition 3.1 and the definition of U3, the above maximum is less that CKn for all
n ≥ 1, with CK random but finite and independent of n.

Moreover, in view of Proposition 3.1 and (23,24), we see that

D̂n = nλ′′(βn(kn)) + W ′′
n (βn(kn)) (29)

is such that C ′
Kn ≤ D̂n ≤ C ′′

Kn for some positive constants C ′
K,C ′′

K .
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We split the integral in (28) according to |u| ≤ εn := (lnn/n)1/2 or not, and the first
contribution is

∫

|u|≤εn

Zn(βn(kn) + iu)

Zn(βn(kn))
e−iknu du

=
∫

|u|≤εn

exp
{

− u2

2
D̂n

}
du(1 + o(1))

= 1√
D̂n

∫

|u|≤εnD̂
1/2
n

exp

{
−u2

2

}
du(1 + o(1))

= 1√
2πD̂n

(1 + o(1)) (30)

since εnD̂
1/2
n → ∞ by (29).

Finally, to show that the other contribution is negligible, we need the following fact:

Lemma 3.3 There exist an event �3 with P(�3) = 1, an integer random variable n0, a
neighborhood U5 of 0 in R, and κ > 0 such that n0(η) < ∞ for η ∈ �3 and

∣∣∣∣
Zn(β + iu)

Zn(β)

∣∣∣∣ ≤ exp{−κnu2} + exp{−κn}

for η ∈ �3, β ∈ U5, u ∈ [−π,π], and n ≥ n0(η).

With the lemma to hand, for η,β,u as above, we bound
∫

εn<u≤π

Zn(βn(kn) + iu)

Zn(βn(kn))
e−iknu du = o(D̂−1/2

n )

where we have used n = O(D̂n) of (29). Combined with (30) and (28) this estimate yields
the proof of the theorem, with �2 = �1 ∩ �3, and U4 = U5 ∩ U3. �

We turn to the proof of Lemma 3.3, which states that the distribution νn,β does not con-
centrate on a sublattice of Z, and is not too close from such a distribution. In our proof
we take advantage of some (conditional) independence in the variables η(t, St ) under νn,β .
This is reminiscent of a construction of [11] for central limit theorem and equivalence of
ensembles for Gibbs random fields.

Proof of Lemma 3.3 In the notations of the proof of Lemma 2.3,
∣∣∣∣
Z2n(β + iu)

Z2n(β)

∣∣∣∣ = ∣∣Eμ2n
eiuH2n

∣∣

= ∣∣Eμ2n
Eμ2n

[
eiuH2n

∣∣�e
]∣∣

≤ Eμ2n

∣∣Eμ2n

[
eiuH2n

∣∣�e
]∣∣

= Eμ2n

n∏

t=1

∣∣Eμ2n

[
eiuη(2t−1,S2t−1)

∣∣�e
]∣∣
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by conditional independence of �1,�3, . . . ,�2n−1 under μ2n given �e . Recall the notation
I from (16) and denote by

m� = Card{x ∈ I(S2t−2, S2t ) : η(2t − 1, x) = �}, � = 0,1, . . . ,

the number of sites which can be reached by the walk at time 2t − 1 and where η(·) equals
to 0 and 1 respectively (m1 + m0 ≤ 2d). Then, for m0,m1 ≥ 1,

∣∣Eμ2n

[
eiuη(2t+1,S2t+1)

∣∣�e
]∣∣ =

∣∣∣
m1e

β+iu + m0

m1eβ + m0

∣∣∣

≤ exp{−Cu2}, |u| ≤ π,

where the constant C is uniform for β ∈ K , and 1 ≤ m0,m1 ≤ 2d . We obtain

∣∣Eμ2n
eiuH2n

∣∣ ≤ Eμ2n
exp

{
−Cu2

n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )}
}

.

So far our arguments did not require β to be small. From this point, we will use a perturba-
tion argument. Since μ

(β)

2n is equal to P for β = 0, we study the term on the right-hand side
for the simple random walk measure P instead of the polymer measure μ2n, and estimate
the error from this change of measure. This procedure is rather weak, we believe that the
result of the lemma holds for a much larger range of β , but we do not know how to control
the term in the right-hand side in a different way.

For ε > 0 we split the last expectation according to the sum being larger or smaller than
nε,

∣∣Eμ2n
eiuH2n

∣∣ ≤ e−Cεu2 + μ2n

(
n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )} ≤ nε

)

≤ e−Cεu2 + e2nβP

(
n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )} ≤ nε

)
(31)

by the obvious inequalities 0 ≤ H2n ≤ 2n. For γ ∈ (0,1], note that

E exp
{−γ 1{M(η,2t − 1, S2t−2, S2t )}

} = e−γ q(S2t−2 − S2t )

+ [1 − q(S2t−2 − S2t )],
with q defined in (17). Then, there exists some C1 > 0 such that

sup
x:P(�2=x)>0,

‖x‖∞≤1

(
e−γ q(x) + [1 − q(x)]) ≤ exp{−C1γ }, γ ∈ (0,1].

Hence,

EEP exp

{
−γ

n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )}
}

= EP exp

{
−C1γ

n∑

t=1

1{‖�2t−2 − �2t‖∞ ≤ 1}
}
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= (
EP exp

{−C1γ 1{‖�2‖∞ ≤ 1}})n

=
(

(2d − 1)e−C1γ + 1

2d

)n

≤ e−nC2γ

with C2 > 0. Now, we choose ε = C2/2, γ = 1, and we get

EP

(
n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )} ≤ nε

)

≤ enγ ε
EEP exp

{
−γ

n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )}
}

≤ e−nC2/2,

and then

P

(
P

(
n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )} ≤ nε

)
≥ e−nC2/4

)
≤ e−nC2/4.

By Borel-Cantelli lemma, the set �3 of all environments such that

P

(
n∑

t=1

1{M(η,2t − 1,�2t−2,�2t )} ≤ nε

)
≤ e−nC2/4 eventually,

is of full measure. We define n0 as the first integer (if exists) from which the previous bound
is fulfilled, and U5 = (−C2/4,C2/4). From (31) we easily check that Lemma 3.3 holds true
with κ = min(Cε,C2/2). �

Proof of Theorem 1.6 The theorem is a corollary of Theorem 3.2, where �2 and U3 are
introduced. In particular we know that α = −η∗ in U3. Note that β(ρ) is the maximizer in the
definition of λ∗(ρ) as a Legendre transform. Since kn/n → ρ, we have that βn(kn) → β(ρ).
By (29), D̂n ∼ nλ′′(β(ρ)), and by Legendre duality,

(λ∗)′ ◦ λ′ = Id,

and so λ′′(β(ρ)) = 1/(λ∗)′′(ρ). The only quantity left to be studied is In(kn). Combining
(26, 23) and performing the change of variable β = β(kn/n) + v, we have

In(kn) = sup{βkn − nλ̂(β) − lnWn(β);β ∈ R}
= sup

{
(β(kn/n) + v)kn − nλ̂(β(kn/n) + v)

− lnWn(β(kn/n) + v);v ∈ R
}

= sup
{
n
[
λ̂(β(kn/n)) − λ̂(β(kn/n) + v) + λ̂′(β(kn/n))v

]

− lnWn(β(kn/n) + v);v ∈ R
} + nλ̂∗(kn/n)

= nλ̂∗(kn/n) − lnWn(β(kn/n))
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+ sup
{
n
[
λ̂(β(kn/n)) − λ̂(β(kn/n) + v) + λ̂′(β(kn/n))v

]

− lnWn(β(kn/n) + v) + lnWn(β(kn/n));v ∈ R
}

= nλ̂∗(kn/n) − lnWn(β(kn/n)) + o(1)

= nλ̂∗(kn/n) − lnWn(β(ρ)) + o(1)

by strict convexity of λ̂ and the fact that | ln[Wn(β + v)/Wn(β)]| ≤ |v|. �
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